Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Data-driven behavioural biometrics for continuous and adaptive user verification using Smartphone and Smartwatch (2110.03149v1)

Published 7 Oct 2021 in cs.LG and eess.SP

Abstract: Recent studies have shown how motion-based biometrics can be used as a form of user authentication and identification without requiring any human cooperation. This category of behavioural biometrics deals with the features we learn in our life as a result of our interaction with the environment and nature. This modality is related to change in human behaviour over time. The developments in these methods aim to amplify continuous authentication such as biometrics to protect their privacy on user devices. Various Continuous Authentication (CA) systems have been proposed in the literature. They represent a new generation of security mechanisms that continuously monitor user behaviour and use this as the basis to re-authenticate them periodically throughout a login session. However, these methods usually constitute a single classification model which is used to identify or verify a user. This work proposes an algorithm to blend behavioural biometrics with multi-factor authentication (MFA) by introducing a two-step user verification algorithm that verifies the user's identity using motion-based biometrics and complements the multi-factor authentication, thus making it more secure and flexible. This two-step user verification algorithm is also immune to adversarial attacks, based on our experimental results which show how the rate of misclassification drops while using this model with adversarial data.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.