Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A Comparative Study of Transformer-Based Language Models on Extractive Question Answering (2110.03142v1)

Published 7 Oct 2021 in cs.CL

Abstract: Question Answering (QA) is a task in natural language processing that has seen considerable growth after the advent of transformers. There has been a surge in QA datasets that have been proposed to challenge natural language processing models to improve human and existing model performance. Many pre-trained LLMs have proven to be incredibly effective at the task of extractive question answering. However, generalizability remains as a challenge for the majority of these models. That is, some datasets require models to reason more than others. In this paper, we train various pre-trained LLMs and fine-tune them on multiple question answering datasets of varying levels of difficulty to determine which of the models are capable of generalizing the most comprehensively across different datasets. Further, we propose a new architecture, BERT-BiLSTM, and compare it with other LLMs to determine if adding more bidirectionality can improve model performance. Using the F1-score as our metric, we find that the RoBERTa and BART pre-trained models perform the best across all datasets and that our BERT-BiLSTM model outperforms the baseline BERT model.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.