Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Pointer Networks for Traveling Salesman Problems Optimization (2110.03104v2)

Published 6 Oct 2021 in cs.LG, cs.AI, and math.OC

Abstract: In this work, a novel idea is presented for combinatorial optimization problems, a hybrid network, which results in a superior outcome. We applied this method to graph pointer networks [1], expanding its capabilities to a higher level. We proposed a hybrid pointer network (HPN) to solve the travelling salesman problem trained by reinforcement learning. Furthermore, HPN builds upon graph pointer networks which is an extension of pointer networks with an additional graph embedding layer. HPN outperforms the graph pointer network in solution quality due to the hybrid encoder, which provides our model with a verity encoding type, allowing our model to converge to a better policy. Our network significantly outperforms the original graph pointer network for small and large-scale problems increasing its performance for TSP50 from 5.959 to 5.706 without utilizing 2opt, Pointer networks, Attention model, and a wide range of models, producing results comparable to highly tuned and specialized algorithms. We make our data, models, and code publicly available [2].

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Ahmed Stohy (1 paper)
  2. Heba-Tullah Abdelhakam (1 paper)
  3. Sayed Ali (1 paper)
  4. Mohammed Elhenawy (34 papers)
  5. Abdallah A Hassan (3 papers)
  6. Mahmoud Masoud (7 papers)
  7. Sebastien Glaser (6 papers)
  8. Andry Rakotonirainy (14 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.