Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Machine Learning Practices Outside Big Tech: How Resource Constraints Challenge Responsible Development (2110.02932v1)

Published 6 Oct 2021 in cs.LG and cs.CY

Abstract: Practitioners from diverse occupations and backgrounds are increasingly using ML methods. Nonetheless, studies on ML Practitioners typically draw populations from Big Tech and academia, as researchers have easier access to these communities. Through this selection bias, past research often excludes the broader, lesser-resourced ML community -- for example, practitioners working at startups, at non-tech companies, and in the public sector. These practitioners share many of the same ML development difficulties and ethical conundrums as their Big Tech counterparts; however, their experiences are subject to additional under-studied challenges stemming from deploying ML with limited resources, increased existential risk, and absent access to in-house research teams. We contribute a qualitative analysis of 17 interviews with stakeholders from organizations which are less represented in prior studies. We uncover a number of tensions which are introduced or exacerbated by these organizations' resource constraints -- tensions between privacy and ubiquity, resource management and performance optimization, and access and monopolization. Increased academic focus on these practitioners can facilitate a more holistic understanding of ML limitations, and so is useful for prescribing a research agenda to facilitate responsible ML development for all.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.