Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reversible Attack based on Local Visual Adversarial Perturbation (2110.02700v3)

Published 6 Oct 2021 in cs.CV

Abstract: Adding perturbations to images can mislead classification models to produce incorrect results. Recently, researchers exploited adversarial perturbations to protect image privacy from retrieval by intelligent models. However, adding adversarial perturbations to images destroys the original data, making images useless in digital forensics and other fields. To prevent illegal or unauthorized access to sensitive image data such as human faces without impeding legitimate users, the use of reversible adversarial attack techniques is increasing. The original image can be recovered from its reversible adversarial examples. However, existing reversible adversarial attack methods are designed for traditional imperceptible adversarial perturbations and ignore the local visible adversarial perturbation. In this paper, we propose a new method for generating reversible adversarial examples based on local visible adversarial perturbation. The information needed for image recovery is embedded into the area beyond the adversarial patch by the reversible data hiding technique. To reduce image distortion, lossless compression and the B-R-G (bluered-green) embedding principle are adopted. Experiments on CIFAR-10 and ImageNet datasets show that the proposed method can restore the original images error-free while ensuring good attack performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.