Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

KNN-BERT: Fine-Tuning Pre-Trained Models with KNN Classifier (2110.02523v1)

Published 6 Oct 2021 in cs.CL

Abstract: Pre-trained models are widely used in fine-tuning downstream tasks with linear classifiers optimized by the cross-entropy loss, which might face robustness and stability problems. These problems can be improved by learning representations that focus on similarities in the same class and contradictions in different classes when making predictions. In this paper, we utilize the K-Nearest Neighbors Classifier in pre-trained model fine-tuning. For this KNN classifier, we introduce a supervised momentum contrastive learning framework to learn the clustered representations of the supervised downstream tasks. Extensive experiments on text classification tasks and robustness tests show that by incorporating KNNs with the traditional fine-tuning process, we can obtain significant improvements on the clean accuracy in both rich-source and few-shot settings and can improve the robustness against adversarial attacks. \footnote{all codes is available at https://github.com/LinyangLee/KNN-BERT}

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube