Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$O\left(1/T\right)$ Time-Average Convergence in a Generalization of Multiagent Zero-Sum Games (2110.02482v1)

Published 6 Oct 2021 in cs.GT and cs.MA

Abstract: We introduce a generalization of zero-sum network multiagent matrix games and prove that alternating gradient descent converges to the set of Nash equilibria at rate $O(1/T)$ for this set of games. Alternating gradient descent obtains this convergence guarantee while using fixed learning rates that are four times larger than the optimistic variant of gradient descent. Experimentally, we show with 97.5% confidence that, on average, these larger learning rates result in time-averaged strategies that are 2.585 times closer to the set of Nash equilibria than optimistic gradient descent.

Summary

We haven't generated a summary for this paper yet.