Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Interpreting intermediate convolutional layers in unsupervised acoustic word classification (2110.02375v2)

Published 5 Oct 2021 in cs.SD, cs.CL, and eess.AS

Abstract: Understanding how deep convolutional neural networks classify data has been subject to extensive research. This paper proposes a technique to visualize and interpret intermediate layers of unsupervised deep convolutional networks by averaging over individual feature maps in each convolutional layer and inferring underlying distributions of words with non-linear regression techniques. A GAN-based architecture (ciwGAN arXiv:2006.02951) that includes a Generator, a Discriminator, and a classifier was trained on unlabeled sliced lexical items from TIMIT. The training process results in a deep convolutional network that learns to classify words into discrete classes only from the requirement of the Generator to output informative data. This classifier network has no access to the training data -- only to the generated data. We propose a technique to visualize individual convolutional layers in the classifier that yields highly informative time-series data for each convolutional layer and apply it to unobserved test data. Using non-linear regression, we infer underlying distributions for each word which allows us to analyze both absolute values and shapes of individual words at different convolutional layers, as well as perform hypothesis testing on their acoustic properties. The technique also allows us to test individual phone contrasts and how they are represented at each layer.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.