Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

FedDQ: Communication-Efficient Federated Learning with Descending Quantization (2110.02291v5)

Published 5 Oct 2021 in cs.LG

Abstract: Federated learning (FL) is an emerging learning paradigm without violating users' privacy. However, large model size and frequent model aggregation cause serious communication bottleneck for FL. To reduce the communication volume, techniques such as model compression and quantization have been proposed. Besides the fixed-bit quantization, existing adaptive quantization schemes use ascending-trend quantization, where the quantization level increases with the training stages. In this paper, we first investigate the impact of quantization on model convergence, and show that the optimal quantization level is directly related to the range of the model updates. Given the model is supposed to converge with the progress of the training, the range of the model updates will gradually shrink, indicating that the quantization level should decrease with the training stages. Based on the theoretical analysis, a descending quantization scheme named FedDQ is proposed. Experimental results show that the proposed descending quantization scheme can save up to 65.2% of the communicated bit volume and up to 68% of the communication rounds, when compared with existing schemes.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube