Turing approximations, toric isometric embeddings & manifold convolutions (2110.02279v1)
Abstract: Convolutions are fundamental elements in deep learning architectures. Here, we present a theoretical framework for combining extrinsic and intrinsic approaches to manifold convolution through isometric embeddings into tori. In this way, we define a convolution operator for a manifold of arbitrary topology and dimension. We also explain geometric and topological conditions that make some local definitions of convolutions which rely on translating filters along geodesic paths on a manifold, computationally intractable. A result of Alan Turing from 1938 underscores the need for such a toric isometric embedding approach to achieve a global definition of convolution on computable, finite metric space approximations to a smooth manifold.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.