Papers
Topics
Authors
Recent
2000 character limit reached

Scaling up instance annotation via label propagation (2110.02277v1)

Published 5 Oct 2021 in cs.CV

Abstract: Manually annotating object segmentation masks is very time-consuming. While interactive segmentation methods offer a more efficient alternative, they become unaffordable at a large scale because the cost grows linearly with the number of annotated masks. In this paper, we propose a highly efficient annotation scheme for building large datasets with object segmentation masks. At a large scale, images contain many object instances with similar appearance. We exploit these similarities by using hierarchical clustering on mask predictions made by a segmentation model. We propose a scheme that efficiently searches through the hierarchy of clusters and selects which clusters to annotate. Humans manually verify only a few masks per cluster, and the labels are propagated to the whole cluster. Through a large-scale experiment to populate 1M unlabeled images with object segmentation masks for 80 object classes, we show that (1) we obtain 1M object segmentation masks with an total annotation time of only 290 hours; (2) we reduce annotation time by 76x compared to manual annotation; (3) the segmentation quality of our masks is on par with those from manually annotated datasets. Code, data, and models are available online.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.