Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SeanNet: Semantic Understanding Network for Localization Under Object Dynamics (2110.02276v2)

Published 5 Oct 2021 in cs.RO and cs.LG

Abstract: We aim for domestic robots to perform long-term indoor service. Under the object-level scene dynamics induced by daily human activities, a robot needs to robustly localize itself in the environment subject to scene uncertainties. Previous works have addressed visual-based localization in static environments, yet the object-level scene dynamics challenge existing methods for the long-term deployment of the robot. This paper proposes a SEmantic understANding Network (SeanNet) architecture that enables an effective learning process with coupled visual and semantic inputs. With a dataset that contains object dynamics, we propose a cascaded contrastive learning scheme to train the SeanNet for learning a vector scene embedding. Subsequently, we can measure the similarity between the current observed scene and the target scene, whereby enables robust localization under object-level dynamics. In our experiments, we benchmark SeanNet against state-of-the-art image-encoding networks (baselines) on scene similarity measures. The SeanNet architecture with the proposed training method can achieve an 85.02\% accuracy which is higher than baselines. We further integrate the SeanNet and the other networks as the localizers into a visual navigation application. We demonstrate that SeanNet achieves higher success rates compared to the baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.