Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KKT Conditions, First-Order and Second-Order Optimization, and Distributed Optimization: Tutorial and Survey (2110.01858v1)

Published 5 Oct 2021 in math.OC, cs.DC, cs.LG, cs.NA, and math.NA

Abstract: This is a tutorial and survey paper on Karush-Kuhn-Tucker (KKT) conditions, first-order and second-order numerical optimization, and distributed optimization. After a brief review of history of optimization, we start with some preliminaries on properties of sets, norms, functions, and concepts of optimization. Then, we introduce the optimization problem, standard optimization problems (including linear programming, quadratic programming, and semidefinite programming), and convex problems. We also introduce some techniques such as eliminating inequality, equality, and set constraints, adding slack variables, and epigraph form. We introduce Lagrangian function, dual variables, KKT conditions (including primal feasibility, dual feasibility, weak and strong duality, complementary slackness, and stationarity condition), and solving optimization by method of Lagrange multipliers. Then, we cover first-order optimization including gradient descent, line-search, convergence of gradient methods, momentum, steepest descent, and backpropagation. Other first-order methods are explained, such as accelerated gradient method, stochastic gradient descent, mini-batch gradient descent, stochastic average gradient, stochastic variance reduced gradient, AdaGrad, RMSProp, and Adam optimizer, proximal methods (including proximal mapping, proximal point algorithm, and proximal gradient method), and constrained gradient methods (including projected gradient method, projection onto convex sets, and Frank-Wolfe method). We also cover non-smooth and $\ell_1$ optimization methods including lasso regularization, convex conjugate, Huber function, soft-thresholding, coordinate descent, and subgradient methods. Then, we explain second-order methods including Newton's method for unconstrained, equality constrained, and inequality constrained problems....

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.