Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scalable Relational Query Processing on Big Matrix Data (2110.01767v2)

Published 5 Oct 2021 in cs.DB

Abstract: The use of large-scale machine learning methods is becoming ubiquitous in many applications ranging from business intelligence to self-driving cars. These methods require a complex computation pipeline consisting of various types of operations, e.g., relational operations for pre-processing or post-processing the dataset, and matrix operations for core model computations. Many existing systems focus on efficiently processing matrix-only operations, and assume that the inputs to the relational operators are already pre-computed and are materialized as intermediate matrices. However, the input to a relational operator may be complex in machine learning pipelines, and may involve various combinations of matrix operators. Hence, it is critical to realize scalable and efficient relational query processors that directly operate on big matrix data. This paper presents new efficient and scalable relational query processing techniques on big matrix data for in-memory distributed clusters. The proposed techniques leverage algebraic transformation rules to rewrite query execution plans into ones with lower computation costs. A distributed query plan optimizer exploits the sparsity-inducing property of merge functions as well as Bloom join strategies for efficiently evaluating various flavors of the join operation. Furthermore, optimized partitioning schemes for the input matrices are developed to facilitate the performance of join operations based on a cost model that minimizes the communication overhead.The proposed relational query processing techniques are prototyped in Apache Spark. Experiments on both real and synthetic data demonstrate that the proposed techniques achieve up to two orders of magnitude performance improvement over state-of-the-art systems on a wide range of applications.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube