Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Causal Representation Learning for Context-Aware Face Transfer (2110.01571v4)

Published 4 Oct 2021 in cs.CV and stat.ME

Abstract: Human face synthesis involves transferring knowledge about the identity and identity-dependent face shape (IDFS) of a human face to target face images where the context (e.g., facial expressions, head poses, and other background factors) may change dramatically. Human faces are non-rigid, so facial expression leads to deformation of face shape, and head pose also affects the face observed in 2D images. A key challenge in face transfer is to match the face with unobserved new contexts, adapting the face appearance to different poses and expressions accordingly. In this work, we find a way to provide prior knowledge for generative models to reason about the appropriate appearance of a human face in response to various expressions and poses. We propose a novel context-aware face transfer method, called CarTrans, that incorporates causal effects of contextual factors into face representation, and thus is able to be aware of the uncertainty of new contexts. We estimate the effect of facial expression and head pose in terms of counterfactual inference by designing a controlled intervention trial, thus avoiding the requirement of a large number of observations to cover the pose-expression space well. Moreover, we propose a kernel regression-based encoder that eliminates the identity specificity of target faces when encoding contextual information from target images. The resulting method shows impressive performance, allowing fine-grained control over face shape and appearance under various contextual conditions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.