Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Proposed Conceptual Framework for a Representational Approach to Information Retrieval (2110.01529v2)

Published 4 Oct 2021 in cs.IR and cs.CL

Abstract: This paper outlines a conceptual framework for understanding recent developments in information retrieval and natural language processing that attempts to integrate dense and sparse retrieval methods. I propose a representational approach that breaks the core text retrieval problem into a logical scoring model and a physical retrieval model. The scoring model is defined in terms of encoders, which map queries and documents into a representational space, and a comparison function that computes query-document scores. The physical retrieval model defines how a system produces the top-$k$ scoring documents from an arbitrarily large corpus with respect to a query. The scoring model can be further analyzed along two dimensions: dense vs. sparse representations and supervised (learned) vs. unsupervised approaches. I show that many recently proposed retrieval methods, including multi-stage ranking designs, can be seen as different parameterizations in this framework, and that a unified view suggests a number of open research questions, providing a roadmap for future work. As a bonus, this conceptual framework establishes connections to sentence similarity tasks in natural language processing and information access "technologies" prior to the dawn of computing.

Citations (46)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)