Papers
Topics
Authors
Recent
2000 character limit reached

A Proposed Conceptual Framework for a Representational Approach to Information Retrieval (2110.01529v2)

Published 4 Oct 2021 in cs.IR and cs.CL

Abstract: This paper outlines a conceptual framework for understanding recent developments in information retrieval and natural language processing that attempts to integrate dense and sparse retrieval methods. I propose a representational approach that breaks the core text retrieval problem into a logical scoring model and a physical retrieval model. The scoring model is defined in terms of encoders, which map queries and documents into a representational space, and a comparison function that computes query-document scores. The physical retrieval model defines how a system produces the top-$k$ scoring documents from an arbitrarily large corpus with respect to a query. The scoring model can be further analyzed along two dimensions: dense vs. sparse representations and supervised (learned) vs. unsupervised approaches. I show that many recently proposed retrieval methods, including multi-stage ranking designs, can be seen as different parameterizations in this framework, and that a unified view suggests a number of open research questions, providing a roadmap for future work. As a bonus, this conceptual framework establishes connections to sentence similarity tasks in natural language processing and information access "technologies" prior to the dawn of computing.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 23 likes about this paper.