Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Factorized Neural Transducer for Efficient Language Model Adaptation (2110.01500v5)

Published 27 Sep 2021 in cs.CL and eess.AS

Abstract: In recent years, end-to-end (E2E) based automatic speech recognition (ASR) systems have achieved great success due to their simplicity and promising performance. Neural Transducer based models are increasingly popular in streaming E2E based ASR systems and have been reported to outperform the traditional hybrid system in some scenarios. However, the joint optimization of acoustic model, lexicon and LLM in neural Transducer also brings about challenges to utilize pure text for LLM adaptation. This drawback might prevent their potential applications in practice. In order to address this issue, in this paper, we propose a novel model, factorized neural Transducer, by factorizing the blank and vocabulary prediction, and adopting a standalone LLM for the vocabulary prediction. It is expected that this factorization can transfer the improvement of the standalone LLM to the Transducer for speech recognition, which allows various LLM adaptation techniques to be applied. We demonstrate that the proposed factorized neural Transducer yields 15% to 20% WER improvements when out-of-domain text data is used for LLM adaptation, at the cost of a minor degradation in WER on a general test set.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.