Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

RED++ : Data-Free Pruning of Deep Neural Networks via Input Splitting and Output Merging (2110.01397v1)

Published 30 Sep 2021 in cs.LG and cs.CV

Abstract: Pruning Deep Neural Networks (DNNs) is a prominent field of study in the goal of inference runtime acceleration. In this paper, we introduce a novel data-free pruning protocol RED++. Only requiring a trained neural network, and not specific to DNN architecture, we exploit an adaptive data-free scalar hashing which exhibits redundancies among neuron weight values. We study the theoretical and empirical guarantees on the preservation of the accuracy from the hashing as well as the expected pruning ratio resulting from the exploitation of said redundancies. We propose a novel data-free pruning technique of DNN layers which removes the input-wise redundant operations. This algorithm is straightforward, parallelizable and offers novel perspective on DNN pruning by shifting the burden of large computation to efficient memory access and allocation. We provide theoretical guarantees on RED++ performance and empirically demonstrate its superiority over other data-free pruning methods and its competitiveness with data-driven ones on ResNets, MobileNets and EfficientNets.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.