Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Pharmacoprint -- a combination of pharmacophore fingerprint and artificial intelligence as a tool for computer-aided drug design (2110.01339v2)

Published 4 Oct 2021 in q-bio.QM and cs.LG

Abstract: Structural fingerprints and pharmacophore modeling are methodologies that have been used for at least two decades in various fields of cheminformatics: from similarity searching to ML. Advances in silico techniques consequently led to combining both these methodologies into a new approach known as pharmacophore fingerprint. Herein, we propose a high-resolution, pharmacophore fingerprint called Pharmacoprint that encodes the presence, types, and relationships between pharmacophore features of a molecule. Pharmacoprint was evaluated in classification experiments by using ML algorithms (logistic regression, support vector machines, linear support vector machines, and neural networks) and outperformed other popular molecular fingerprints (i.e., Estate, MACCS, PubChem, Substructure, Klekotha-Roth, CDK, Extended, and GraphOnly) and ChemAxon Pharmacophoric Features fingerprint. Pharmacoprint consisted of 39973 bits; several methods were applied for dimensionality reduction, and the best algorithm not only reduced the length of bit string but also improved the efficiency of ML tests. Further optimization allowed us to define the best parameter settings for using Pharmacoprint in discrimination tests and for maximizing statistical parameters. Finally, Pharmacoprint generated for 3D structures with defined hydrogens as input data was applied to neural networks with a supervised autoencoder for selecting the most important bits and allowed to maximize Matthews Correlation Coefficient up to 0.962. The results show the potential of Pharmacoprint as a new, perspective tool for computer-aided drug design.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.