Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Identification of Butterfly Sparse Matrix Factorizations (2110.01230v9)

Published 4 Oct 2021 in cs.LG

Abstract: Fast transforms correspond to factorizations of the form $\mathbf{Z} = \mathbf{X}{(1)} \ldots \mathbf{X}{(J)}$, where each factor $ \mathbf{X}{(\ell)}$ is sparse and possibly structured. This paper investigates essential uniqueness of such factorizations, i.e., uniqueness up to unavoidable scaling ambiguities. Our main contribution is to prove that any $N \times N$ matrix having the so-called butterfly structure admits an essentially unique factorization into $J$ butterfly factors (where $N = 2{J}$), and that the factors can be recovered by a hierarchical factorization method, which consists in recursively factorizing the considered matrix into two factors. This hierarchical identifiability property relies on a simple identifiability condition in the two-layer and fixed-support setting. This approach contrasts with existing ones that fit the product of butterfly factors to a given matrix via gradient descent. The proposed method can be applied in particular to retrieve the factorization of the Hadamard or the discrete Fourier transform matrices of size $N=2J$. Computing such factorizations costs $\mathcal{O}(N{2})$, which is of the order of dense matrix-vector multiplication, while the obtained factorizations enable fast $\mathcal{O}(N \log N)$ matrix-vector multiplications and have the potential to be applied to compress deep neural networks.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.