Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Understanding Persuasion in Computational Argumentation (2110.01078v1)

Published 3 Oct 2021 in cs.CL

Abstract: Opinion formation and persuasion in argumentation are affected by three major factors: the argument itself, the source of the argument, and the properties of the audience. Understanding the role of each and the interplay between them is crucial for obtaining insights regarding argument interpretation and generation. It is particularly important for building effective argument generation systems that can take both the discourse and the audience characteristics into account. Having such personalized argument generation systems would be helpful to expose individuals to different viewpoints and help them make a more fair and informed decision on an issue. Even though studies in Social Sciences and Psychology have shown that source and audience effects are essential components of the persuasion process, most research in computational persuasion has focused solely on understanding the characteristics of persuasive language. In this thesis, we make several contributions to understand the relative effect of the source, audience, and language in computational persuasion. We first introduce a large-scale dataset with extensive user information to study these factors' effects simultaneously. Then, we propose models to understand the role of the audience's prior beliefs on their perception of arguments. We also investigate the role of social interactions and engagement in understanding users' success in online debating over time. We find that the users' prior beliefs and social interactions play an essential role in predicting their success in persuasion. Finally, we explore the importance of incorporating contextual information to predict argument impact and show improvements compared to encoding only the text of the arguments.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.