Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-task Voice Activated Framework using Self-supervised Learning (2110.01077v3)

Published 3 Oct 2021 in eess.AS, cs.CL, and cs.SD

Abstract: Self-supervised learning methods such as wav2vec 2.0 have shown promising results in learning speech representations from unlabelled and untranscribed speech data that are useful for speech recognition. Since these representations are learned without any task-specific supervision, they can also be useful for other voice-activated tasks like speaker verification, keyword spotting, emotion classification etc. In our work, we propose a general purpose framework for adapting a pre-trained wav2vec 2.0 model for different voice-activated tasks. We develop downstream network architectures that operate on the contextualized speech representations of wav2vec 2.0 to adapt the representations for solving a given task. Finally, we extend our framework to perform multi-task learning by jointly optimizing the network parameters on multiple voice activated tasks using a shared transformer backbone. Both of our single and multi-task frameworks achieve state-of-the-art results in speaker verification and keyword spotting benchmarks. Our best performing models achieve 1.98% and 3.15% EER on VoxCeleb1 test set when trained on VoxCeleb2 and VoxCeleb1 respectively, and 98.23% accuracy on Google Speech Commands v1.0 keyword spotting dataset.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.