Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Universal Face Restoration With Memorized Modulation (2110.01033v1)

Published 3 Oct 2021 in cs.CV

Abstract: Blind face restoration (BFR) is a challenging problem because of the uncertainty of the degradation patterns. This paper proposes a Restoration with Memorized Modulation (RMM) framework for universal BFR in diverse degraded scenes and heterogeneous domains. We apply random noise as well as unsupervised wavelet memory to adaptively modulate the face-enhancement generator, considering attentional denormalization in both layer and instance levels. Specifically, in the training stage, the low-level spatial feature embedding, the wavelet memory embedding obtained by wavelet transformation of the high-resolution image, as well as the disentangled high-level noise embeddings are integrated, with the guidance of attentional maps generated from layer normalization, instance normalization, and the original feature map. These three embeddings are respectively associated with the spatial content, high-frequency texture details, and a learnable universal prior against other blind image degradation patterns. We store the spatial feature of the low-resolution image and the corresponding wavelet style code as key and value in the memory unit, respectively. In the test stage, the wavelet memory value whose corresponding spatial key is the most matching with that of the inferred image is retrieved to modulate the generator. Moreover, the universal prior learned from the random noise has been memorized by training the modulation network. Experimental results show the superiority of the proposed method compared with the state-of-the-art methods, and a good generalization in the wild.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.