Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Class of Nonbinary Symmetric Information Bottleneck Problems (2110.00985v1)

Published 3 Oct 2021 in cs.IT and math.IT

Abstract: We study two dual settings of information processing. Let $ \mathsf{Y} \rightarrow \mathsf{X} \rightarrow \mathsf{W} $ be a Markov chain with fixed joint probability mass function $ \mathsf{P}_{\mathsf{X}\mathsf{Y}} $ and a mutual information constraint on the pair $ (\mathsf{W},\mathsf{X}) $. For the first problem, known as Information Bottleneck, we aim to maximize the mutual information between the random variables $ \mathsf{Y} $ and $ \mathsf{W} $, while for the second problem, termed as Privacy Funnel, our goal is to minimize it. In particular, we analyze the scenario for which $ \mathsf{X} $ is the input, and $ \mathsf{Y} $ is the output of modulo-additive noise channel. We provide analytical characterization of the optimal information rates and the achieving distributions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube