Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Semantic-Guided Zero-Shot Learning for Low-Light Image/Video Enhancement (2110.00970v4)

Published 3 Oct 2021 in cs.CV

Abstract: Low-light images challenge both human perceptions and computer vision algorithms. It is crucial to make algorithms robust to enlighten low-light images for computational photography and computer vision applications such as real-time detection and segmentation. This paper proposes a semantic-guided zero-shot low-light enhancement network (SGZ) which is trained in the absence of paired images, unpaired datasets, and segmentation annotation. Firstly, we design an enhancement factor extraction network using depthwise separable convolution for an efficient estimate of the pixel-wise light deficiency of an low-light image. Secondly, we propose a recurrent image enhancement network to progressively enhance the low-light image with affordable model size. Finally, we introduce an unsupervised semantic segmentation network for preserving the semantic information during intensive enhancement. Extensive experiments on benchmark datasets and a low-light video demonstrate that our model outperforms the previous state-of-the-art. We further discuss the benefits of the proposed method for low-light detection and segmentation. Code is available at https://github.com/ShenZheng2000/Semantic-Guided-Low-Light-Image-Enhancement

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.