Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fingerprint Matching using the Onion Peeling Approach and Turning Function (2110.00958v1)

Published 3 Oct 2021 in cs.CV and cs.CG

Abstract: Fingerprint, as one of the most popular and robust biometric traits, can be used in automatic identification and verification systems to identify individuals. Fingerprint matching is a vital and challenging issue in fingerprint recognition systems. Most fingerprint matching algorithms are minutiae-based. The minutiae in fingerprints can be determined by their discontinuity. Ridge ending and ridge bifurcation are two frequently used minutiae in most fingerprint-based matching algorithms. This paper presents a new minutiae-based fingerprint matching using the onion peeling approach. In the proposed method, fingerprints are aligned to find the matched minutiae points. Then, the nested convex polygons of matched minutiae points are constructed and the comparison between peer-to-peer polygons is performed by the turning function distance. Simplicity, accuracy, and low time complexity of the Onion peeling approach are three important factors that make it a standard method for fingerprint matching purposes. The performance of the proposed algorithm is evaluated on the database $FVC2002$. The results show that fingerprints of the same fingers have higher scores than different fingers. Since the fingerprints that the difference between the number of their layers is more than $2$ and the minutiae matching score lower than 0.15 are ignored, the better results are obtained.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.