Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Line Search for Multi-Task Learning (2110.00874v1)

Published 2 Oct 2021 in cs.LG and math.OC

Abstract: Multi-task learning is a powerful method for solving several tasks jointly by learning robust representation. Optimization of the multi-task learning model is a more complex task than a single-task due to task conflict. Based on theoretical results, convergence to the optimal point is guaranteed when step size is chosen through line search. But, usually, line search for the step size is not the best choice due to the large computational time overhead. We propose a novel idea for line search algorithms in multi-task learning. The idea is to use latent representation space instead of parameter space for finding step size. We examined this idea with backtracking line search. We compare this fast backtracking algorithm with classical backtracking and gradient methods with a constant learning rate on MNIST, CIFAR-10, Cityscapes tasks. The systematic empirical study showed that the proposed method leads to more accurate and fast solution, than the traditional backtracking approach and keep competitive computational time and performance compared to the constant learning rate method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.