Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Characterizing SARS-CoV-2 Spike Sequences Based on Geographical Location (2110.00809v4)

Published 2 Oct 2021 in cs.LG and q-bio.QM

Abstract: With the rapid spread of COVID-19 worldwide, viral genomic data is available in the order of millions of sequences on public databases such as GISAID. This Big Data creates a unique opportunity for analysis towards the research of effective vaccine development for current pandemics, and avoiding or mitigating future pandemics. One piece of information that comes with every such viral sequence is the geographical location where it was collected -- the patterns found between viral variants and geographical location surely being an important part of this analysis. One major challenge that researchers face is processing such huge, highly dimensional data to obtain useful insights as quickly as possible. Most of the existing methods face scalability issues when dealing with the magnitude of such data. In this paper, we propose an approach that first computes a numerical representation of the spike protein sequence of SARS-CoV-2 using $k$-mers (substrings) and then uses several machine learning models to classify the sequences based on geographical location. We show that our proposed model significantly outperforms the baselines. We also show the importance of different amino acids in the spike sequences by computing the information gain corresponding to the true class labels.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.