Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FICGAN: Facial Identity Controllable GAN for De-identification (2110.00740v1)

Published 2 Oct 2021 in cs.CV and cs.AI

Abstract: In this work, we present Facial Identity Controllable GAN (FICGAN) for not only generating high-quality de-identified face images with ensured privacy protection, but also detailed controllability on attribute preservation for enhanced data utility. We tackle the less-explored yet desired functionality in face de-identification based on the two factors. First, we focus on the challenging issue to obtain a high level of privacy protection in the de-identification task while uncompromising the image quality. Second, we analyze the facial attributes related to identity and non-identity and explore the trade-off between the degree of face de-identification and preservation of the source attributes for enhanced data utility. Based on the analysis, we develop Facial Identity Controllable GAN (FICGAN), an autoencoder-based conditional generative model that learns to disentangle the identity attributes from non-identity attributes on a face image. By applying the manifold k-same algorithm to satisfy k-anonymity for strengthened security, our method achieves enhanced privacy protection in de-identified face images. Numerous experiments demonstrate that our model outperforms others in various scenarios of face de-identification.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube