Multi-Agent Algorithmic Recourse (2110.00673v1)
Abstract: The recent adoption of machine learning as a tool in real world decision making has spurred interest in understanding how these decisions are being made. Counterfactual Explanations are a popular interpretable machine learning technique that aims to understand how a machine learning model would behave if given alternative inputs. Many explanations attempt to go further and recommend actions an individual could take to obtain a more desirable output from the model. These recommendations are known as algorithmic recourse. Past work has largely focused on the effect algorithmic recourse has on a single agent. In this work, we show that when the assumption of a single agent environment is relaxed, current approaches to algorithmic recourse fail to guarantee certain ethically desirable properties. Instead, we propose a new game theory inspired framework for providing algorithmic recourse in a multi-agent environment that does guarantee these properties.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.