Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Distributed $Δ$-Coloring Plays Hide-and-Seek (2110.00643v3)

Published 1 Oct 2021 in cs.DC

Abstract: We prove several new tight distributed lower bounds for classic symmetry breaking graph problems. As a basic tool, we first provide a new insightful proof that any deterministic distributed algorithm that computes a $\Delta$-coloring on $\Delta$-regular trees requires $\Omega(\log_\Delta n)$ rounds and any randomized algorithm requires $\Omega(\log_\Delta\log n)$ rounds. We prove this result by showing that a natural relaxation of the $\Delta$-coloring problem is a fixed point in the round elimination framework. As a first application, we show that our $\Delta$-coloring lower bound proof directly extends to arbdefective colorings. We exactly characterize which variants of the arbdefective coloring problem are "easy", and which of them instead are "hard". As a second application, which we see as our main contribution, we use the structure of the fixed point as a building block to prove lower bounds as a function of $\Delta$ for a large class of distributed symmetry breaking problems. For example, we obtain a tight lower bound for the fundamental problem of computing a $(2,\beta)$-ruling set. This is an exponential improvement over the best existing lower bound for the problem, which was proven in [FOCS '20]. Our lower bound even applies to a much more general family of problems that allows for almost arbitrary combinations of natural constraints from coloring problems, orientation problems, and independent set problems, and provides a single unified proof for known and new lower bound results for these types of problems. Our lower bounds as a function of $\Delta$ also imply lower bounds as a function of $n$. We obtain, for example, that maximal independent set, on trees, requires $\Omega(\log n / \log \log n)$ rounds for deterministic algorithms, which is tight.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.