Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Instance Segmentation Challenge Track Technical Report, VIPriors Workshop at ICCV 2021: Task-Specific Copy-Paste Data Augmentation Method for Instance Segmentation (2110.00470v1)

Published 1 Oct 2021 in cs.CV and cs.AI

Abstract: Copy-Paste has proven to be a very effective data augmentation for instance segmentation which can improve the generalization of the model. We used a task-specific Copy-Paste data augmentation method to achieve good performance on the instance segmentation track of the 2nd VIPriors workshop challenge. We also applied additional data augmentation techniques including RandAugment and GridMask. Our segmentation model is the HTC detector on the CBSwin-B with CBFPN with some tweaks. This model was trained at the multi-scale mode by a random sampler on the 6x schedule and tested at the single-scale mode. By combining these techniques, we achieved 0.398 [email protected]:0.95 with the validation set and 0.433 [email protected]:0.95 with the test set. Finally, we reached 0.477 [email protected]:0.95 with the test set by adding the validation set to the training data. Source code is available at https://github.com/jahongir7174/VIP2021.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com