Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Survey of Knowledge Enhanced Pre-trained Models (2110.00269v5)

Published 1 Oct 2021 in cs.CL and cs.AI

Abstract: Pre-trained LLMs learn informative word representations on a large-scale text corpus through self-supervised learning, which has achieved promising performance in fields of NLP after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. We refer to pre-trained LLMs with knowledge injection as knowledge-enhanced pre-trained LLMs (KEPLMs). These models demonstrate deep understanding and logical reasoning and introduce interpretability. In this survey, we provide a comprehensive overview of KEPLMs in NLP. We first discuss the advancements in pre-trained LLMs and knowledge representation learning. Then we systematically categorize existing KEPLMs from three different perspectives. Finally, we outline some potential directions of KEPLMs for future research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.