Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Span Labeling Approach for Vietnamese and Chinese Word Segmentation (2110.00156v1)

Published 1 Oct 2021 in cs.CL

Abstract: In this paper, we propose a span labeling approach to model n-gram information for Vietnamese word segmentation, namely SPAN SEG. We compare the span labeling approach with the conditional random field by using encoders with the same architecture. Since Vietnamese and Chinese have similar linguistic phenomena, we evaluated the proposed method on the Vietnamese treebank benchmark dataset and five Chinese benchmark datasets. Through our experimental results, the proposed approach SpanSeg achieves higher performance than the sequence tagging approach with the state-of-the-art F-score of 98.31% on the Vietnamese treebank benchmark, when they both apply the contextual pre-trained LLM XLM-RoBERTa and the predicted word boundary information. Besides, we do fine-tuning experiments for the span labeling approach on BERT and ZEN pre-trained LLM for Chinese with fewer parameters, faster inference time, and competitive or higher F-scores than the previous state-of-the-art approach, word segmentation with word-hood memory networks, on five Chinese benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.