Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Incremental Layer-wise Self-Supervised Learning for Efficient Speech Domain Adaptation On Device (2110.00155v1)

Published 1 Oct 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Streaming end-to-end speech recognition models have been widely applied to mobile devices and show significant improvement in efficiency. These models are typically trained on the server using transcribed speech data. However, the server data distribution can be very different from the data distribution on user devices, which could affect the model performance. There are two main challenges for on device training, limited reliable labels and limited training memory. While self-supervised learning algorithms can mitigate the mismatch between domains using unlabeled data, they are not applicable on mobile devices directly because of the memory constraint. In this paper, we propose an incremental layer-wise self-supervised learning algorithm for efficient speech domain adaptation on mobile devices, in which only one layer is updated at a time. Extensive experimental results demonstrate that the proposed algorithm obtains a Word Error Rate (WER) on the target domain $24.2\%$ better than supervised baseline and costs $89.7\%$ less training memory than the end-to-end self-supervised learning algorithm.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.