Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Transformers with Natural Language Explanations (2110.00125v3)

Published 2 Sep 2021 in cs.CL and cs.AI

Abstract: Many NLP applications require models to be interpretable. However, many successful neural architectures, including transformers, still lack effective interpretation methods. A possible solution could rely on building explanations from domain knowledge, which is often available as plain, natural language text. We thus propose an extension to transformer models that makes use of external memories to store natural language explanations and use them to explain classification outputs. We conduct an experimental evaluation on two domains, legal text analysis and argument mining, to show that our approach can produce relevant explanations while retaining or even improving classification performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. doi:10.18653/v1/n19-1423.
  2. doi:10.1007/978-3-031-23190-2.
  3. A. Chernyavskiy, D. Ilvovsky, P. Nakov, Transformers: “the end of history” for natural language processing?, in: ECMLP PKDD proceedings, Springer-Verlag, Berlin, Heidelberg, 2021, p. 677–693. doi:10.1007/978-3-030-86523-8\_41.
  4. doi:10.1109/TNNLS.2020.3019893.
  5. doi:10.18653/v1/n19-1357.
  6. doi:10.18653/v1/D19-1002.
  7. doi:10.1109/TKDE.2021.3079836.
  8. doi:10.18653/v1/p16-1228.
  9. doi:10.18653/v1/d16-1173.
  10. doi:10.18653/V1/2023.ACL-LONG.698.
  11. arXiv:2308.03279, doi:10.48550/ARXIV.2308.03279.
  12. doi:10.1126/science.1182594.
  13. doi:10.18653/v1/p19-1285.
  14. arXiv:2004.05150.
  15. arXiv:2010.06891.
  16. doi:10.1109/CVPR42600.2020.01059.
  17. arXiv:1907.01470.
  18. arXiv:2008.01466.
  19. doi:10.18653/v1/2022.acl-long.579.
  20. doi:10.18653/v1/2022.acl-long.356.
  21. doi:10.18653/v1/D19-1610.
  22. doi:10.1109/ACCESS.2019.2957192.
  23. doi:10.18653/v1/d16-1264.
  24. doi:10.1109/SKG49510.2019.00016.
  25. doi:10.18653/v1/2020.emnlp-main.105.
  26. doi:10.1145/3236009.
  27. doi:10.18653/v1/2022.lnls-1.5.
  28. doi:10.18653/V1/2020.ACL-MAIN.508.
  29. doi:10.18653/V1/2020.ACL-MAIN.408.
  30. arXiv:2105.03287.
  31. doi:10.18653/v1/D18-1216.
  32. doi:10.18653/v1/D18-1548.
  33. doi:10.18653/v1/D18-1137.
  34. arXiv:2007.09604.
  35. arXiv:1605.07427.
  36. doi:10.1145/1553374.1553380.
  37. doi:10.3115/v1/d14-1162.
Citations (1)

Summary

We haven't generated a summary for this paper yet.