Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Combining Transformers with Natural Language Explanations (2110.00125v3)

Published 2 Sep 2021 in cs.CL and cs.AI

Abstract: Many NLP applications require models to be interpretable. However, many successful neural architectures, including transformers, still lack effective interpretation methods. A possible solution could rely on building explanations from domain knowledge, which is often available as plain, natural language text. We thus propose an extension to transformer models that makes use of external memories to store natural language explanations and use them to explain classification outputs. We conduct an experimental evaluation on two domains, legal text analysis and argument mining, to show that our approach can produce relevant explanations while retaining or even improving classification performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. doi:10.18653/v1/n19-1423.
  2. doi:10.1007/978-3-031-23190-2.
  3. A. Chernyavskiy, D. Ilvovsky, P. Nakov, Transformers: “the end of history” for natural language processing?, in: ECMLP PKDD proceedings, Springer-Verlag, Berlin, Heidelberg, 2021, p. 677–693. doi:10.1007/978-3-030-86523-8\_41.
  4. doi:10.1109/TNNLS.2020.3019893.
  5. doi:10.18653/v1/n19-1357.
  6. doi:10.18653/v1/D19-1002.
  7. doi:10.1109/TKDE.2021.3079836.
  8. doi:10.18653/v1/p16-1228.
  9. doi:10.18653/v1/d16-1173.
  10. doi:10.18653/V1/2023.ACL-LONG.698.
  11. arXiv:2308.03279, doi:10.48550/ARXIV.2308.03279.
  12. doi:10.1126/science.1182594.
  13. doi:10.18653/v1/p19-1285.
  14. arXiv:2004.05150.
  15. arXiv:2010.06891.
  16. doi:10.1109/CVPR42600.2020.01059.
  17. arXiv:1907.01470.
  18. arXiv:2008.01466.
  19. doi:10.18653/v1/2022.acl-long.579.
  20. doi:10.18653/v1/2022.acl-long.356.
  21. doi:10.18653/v1/D19-1610.
  22. doi:10.1109/ACCESS.2019.2957192.
  23. doi:10.18653/v1/d16-1264.
  24. doi:10.1109/SKG49510.2019.00016.
  25. doi:10.18653/v1/2020.emnlp-main.105.
  26. doi:10.1145/3236009.
  27. doi:10.18653/v1/2022.lnls-1.5.
  28. doi:10.18653/V1/2020.ACL-MAIN.508.
  29. doi:10.18653/V1/2020.ACL-MAIN.408.
  30. arXiv:2105.03287.
  31. doi:10.18653/v1/D18-1216.
  32. doi:10.18653/v1/D18-1548.
  33. doi:10.18653/v1/D18-1137.
  34. arXiv:2007.09604.
  35. arXiv:1605.07427.
  36. doi:10.1145/1553374.1553380.
  37. doi:10.3115/v1/d14-1162.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube