Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Combining Transformers with Natural Language Explanations (2110.00125v3)

Published 2 Sep 2021 in cs.CL and cs.AI

Abstract: Many NLP applications require models to be interpretable. However, many successful neural architectures, including transformers, still lack effective interpretation methods. A possible solution could rely on building explanations from domain knowledge, which is often available as plain, natural language text. We thus propose an extension to transformer models that makes use of external memories to store natural language explanations and use them to explain classification outputs. We conduct an experimental evaluation on two domains, legal text analysis and argument mining, to show that our approach can produce relevant explanations while retaining or even improving classification performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. doi:10.18653/v1/n19-1423.
  2. doi:10.1007/978-3-031-23190-2.
  3. A. Chernyavskiy, D. Ilvovsky, P. Nakov, Transformers: “the end of history” for natural language processing?, in: ECMLP PKDD proceedings, Springer-Verlag, Berlin, Heidelberg, 2021, p. 677–693. doi:10.1007/978-3-030-86523-8\_41.
  4. doi:10.1109/TNNLS.2020.3019893.
  5. doi:10.18653/v1/n19-1357.
  6. doi:10.18653/v1/D19-1002.
  7. doi:10.1109/TKDE.2021.3079836.
  8. doi:10.18653/v1/p16-1228.
  9. doi:10.18653/v1/d16-1173.
  10. doi:10.18653/V1/2023.ACL-LONG.698.
  11. arXiv:2308.03279, doi:10.48550/ARXIV.2308.03279.
  12. doi:10.1126/science.1182594.
  13. doi:10.18653/v1/p19-1285.
  14. arXiv:2004.05150.
  15. arXiv:2010.06891.
  16. doi:10.1109/CVPR42600.2020.01059.
  17. arXiv:1907.01470.
  18. arXiv:2008.01466.
  19. doi:10.18653/v1/2022.acl-long.579.
  20. doi:10.18653/v1/2022.acl-long.356.
  21. doi:10.18653/v1/D19-1610.
  22. doi:10.1109/ACCESS.2019.2957192.
  23. doi:10.18653/v1/d16-1264.
  24. doi:10.1109/SKG49510.2019.00016.
  25. doi:10.18653/v1/2020.emnlp-main.105.
  26. doi:10.1145/3236009.
  27. doi:10.18653/v1/2022.lnls-1.5.
  28. doi:10.18653/V1/2020.ACL-MAIN.508.
  29. doi:10.18653/V1/2020.ACL-MAIN.408.
  30. arXiv:2105.03287.
  31. doi:10.18653/v1/D18-1216.
  32. doi:10.18653/v1/D18-1548.
  33. doi:10.18653/v1/D18-1137.
  34. arXiv:2007.09604.
  35. arXiv:1605.07427.
  36. doi:10.1145/1553374.1553380.
  37. doi:10.3115/v1/d14-1162.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.