Papers
Topics
Authors
Recent
2000 character limit reached

Combining Transformers with Natural Language Explanations (2110.00125v3)

Published 2 Sep 2021 in cs.CL and cs.AI

Abstract: Many NLP applications require models to be interpretable. However, many successful neural architectures, including transformers, still lack effective interpretation methods. A possible solution could rely on building explanations from domain knowledge, which is often available as plain, natural language text. We thus propose an extension to transformer models that makes use of external memories to store natural language explanations and use them to explain classification outputs. We conduct an experimental evaluation on two domains, legal text analysis and argument mining, to show that our approach can produce relevant explanations while retaining or even improving classification performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. doi:10.18653/v1/n19-1423.
  2. doi:10.1007/978-3-031-23190-2.
  3. A. Chernyavskiy, D. Ilvovsky, P. Nakov, Transformers: “the end of history” for natural language processing?, in: ECMLP PKDD proceedings, Springer-Verlag, Berlin, Heidelberg, 2021, p. 677–693. doi:10.1007/978-3-030-86523-8\_41.
  4. doi:10.1109/TNNLS.2020.3019893.
  5. doi:10.18653/v1/n19-1357.
  6. doi:10.18653/v1/D19-1002.
  7. doi:10.1109/TKDE.2021.3079836.
  8. doi:10.18653/v1/p16-1228.
  9. doi:10.18653/v1/d16-1173.
  10. doi:10.18653/V1/2023.ACL-LONG.698.
  11. arXiv:2308.03279, doi:10.48550/ARXIV.2308.03279.
  12. doi:10.1126/science.1182594.
  13. doi:10.18653/v1/p19-1285.
  14. arXiv:2004.05150.
  15. arXiv:2010.06891.
  16. doi:10.1109/CVPR42600.2020.01059.
  17. arXiv:1907.01470.
  18. arXiv:2008.01466.
  19. doi:10.18653/v1/2022.acl-long.579.
  20. doi:10.18653/v1/2022.acl-long.356.
  21. doi:10.18653/v1/D19-1610.
  22. doi:10.1109/ACCESS.2019.2957192.
  23. doi:10.18653/v1/d16-1264.
  24. doi:10.1109/SKG49510.2019.00016.
  25. doi:10.18653/v1/2020.emnlp-main.105.
  26. doi:10.1145/3236009.
  27. doi:10.18653/v1/2022.lnls-1.5.
  28. doi:10.18653/V1/2020.ACL-MAIN.508.
  29. doi:10.18653/V1/2020.ACL-MAIN.408.
  30. arXiv:2105.03287.
  31. doi:10.18653/v1/D18-1216.
  32. doi:10.18653/v1/D18-1548.
  33. doi:10.18653/v1/D18-1137.
  34. arXiv:2007.09604.
  35. arXiv:1605.07427.
  36. doi:10.1145/1553374.1553380.
  37. doi:10.3115/v1/d14-1162.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.