Papers
Topics
Authors
Recent
2000 character limit reached

Trajectory Planning with Deep Reinforcement Learning in High-Level Action Spaces (2110.00044v2)

Published 30 Sep 2021 in eess.SY and cs.SY

Abstract: This paper presents a technique for trajectory planning based on continuously parameterized high-level actions (motion primitives) of variable duration. This technique leverages deep reinforcement learning (Deep RL) to formulate a policy which is suitable for real-time implementation. There is no separation of motion primitive generation and trajectory planning: each individual short-horizon motion is formed during the Deep RL training to achieve the full-horizon objective. Effectiveness of the technique is demonstrated numerically on a well-studied trajectory generation problem and a planning problem on a known obstacle-rich map. This paper also develops a new loss function term for policy-gradient-based Deep RL, which is analogous to an anti-windup mechanism in feedback control. We demonstrate the inclusion of this new term in the underlying optimization increases the average policy return in our numerical example.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 7 likes about this paper.