Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Trajectory Planning with Deep Reinforcement Learning in High-Level Action Spaces (2110.00044v2)

Published 30 Sep 2021 in eess.SY and cs.SY

Abstract: This paper presents a technique for trajectory planning based on continuously parameterized high-level actions (motion primitives) of variable duration. This technique leverages deep reinforcement learning (Deep RL) to formulate a policy which is suitable for real-time implementation. There is no separation of motion primitive generation and trajectory planning: each individual short-horizon motion is formed during the Deep RL training to achieve the full-horizon objective. Effectiveness of the technique is demonstrated numerically on a well-studied trajectory generation problem and a planning problem on a known obstacle-rich map. This paper also develops a new loss function term for policy-gradient-based Deep RL, which is analogous to an anti-windup mechanism in feedback control. We demonstrate the inclusion of this new term in the underlying optimization increases the average policy return in our numerical example.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com