Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Modeling Interactions of Autonomous Vehicles and Pedestrians with Deep Multi-Agent Reinforcement Learning for Collision Avoidance (2109.15266v3)

Published 30 Sep 2021 in cs.RO, cs.AI, cs.LG, and cs.MA

Abstract: Reliable pedestrian crash avoidance mitigation (PCAM) systems are crucial components of safe autonomous vehicles (AVs). The nature of the vehicle-pedestrian interaction where decisions of one agent directly affect the other agent's optimal behavior, and vice versa, is a challenging yet often neglected aspect of such systems. We address this issue by modeling a Markov decision process (MDP) for a simulated AV-pedestrian interaction at an unmarked crosswalk. The AV's PCAM decision policy is learned through deep reinforcement learning (DRL). Since modeling pedestrians realistically is challenging, we compare two levels of intelligent pedestrian behavior. While the baseline model follows a predefined strategy, our advanced pedestrian model is defined as a second DRL agent. This model captures continuous learning and the uncertainty inherent in human behavior, making the AV-pedestrian interaction a deep multi-agent reinforcement learning (DMARL) problem. We benchmark the developed PCAM systems according to the collision rate and the resulting traffic flow efficiency with a focus on the influence of observation uncertainty on the decision-making of the agents. The results show that the AV is able to completely mitigate collisions under the majority of the investigated conditions and that the DRL pedestrian model learns an intelligent crossing behavior.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.