Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Colouring locally sparse graphs with the first moment method (2109.15215v3)

Published 30 Sep 2021 in math.CO and cs.DM

Abstract: We give a short proof of a bound on the list chromatic number of graphs $G$ of maximum degree $\Delta$ where each neighbourhood has density at most $d$, namely $\chi_\ell(G) \le (1+o(1)) \frac{\Delta}{\ln \frac{\Delta}{d+1}}$ as $\frac{\Delta}{d+1} \to \infty$. This bound is tight up to an asymptotic factor $2$, which is the best possible barring a breakthrough in Ramsey theory, and strengthens results due to Vu, and more recently Davies, P., Kang, and Sereni. Our proof relies on the first moment method, and adapts a clever counting argument developed by Rosenfeld in the context of non-repetitive colourings. As a final touch, we show that our method provides an asymptotically tight lower bound on the number of colourings of locally sparse graphs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.