Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Secure Machine Learning over Relational Data (2109.14806v1)

Published 30 Sep 2021 in cs.CR and cs.DB

Abstract: A closer integration of machine learning and relational databases has gained steam in recent years due to the fact that the training data to many ML tasks is the results of a relational query (most often, a join-select query). In a federated setting, this poses an additional challenge, that the tables are held by different parties as their private data, and the parties would like to train the model without having to use a trusted third party. Existing work has only considered the case where the training data is stored in a flat table that has been vertically partitioned, which corresponds to a simple PK-PK join. In this paper, we describe secure protocols to compute the join results of multiple tables conforming to a general foreign-key acyclic schema, and how to feed the results in secret-shared form to a secure ML toolbox. Furthermore, existing secure ML systems reveal the PKs in the join results. We strengthen the privacy protection to higher levels and achieve zero information leakage beyond the trained model. If the model itself is considered sensitive, we show how differential privacy can be incorporated into our framework to also prevent the model from breaching individuals' privacy.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.