Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Grounding Predicates through Actions (2109.14718v2)

Published 29 Sep 2021 in cs.RO

Abstract: Symbols representing abstract states such as "dish in dishwasher" or "cup on table" allow robots to reason over long horizons by hiding details unnecessary for high-level planning. Current methods for learning to identify symbolic states in visual data require large amounts of labeled training data, but manually annotating such datasets is prohibitively expensive due to the combinatorial number of predicates in images. We propose a novel method for automatically labeling symbolic states in large-scale video activity datasets by exploiting known pre- and post-conditions of actions. This automatic labeling scheme only requires weak supervision in the form of an action label that describes which action is demonstrated in each video. We use our framework to train predicate classifiers to identify symbolic relationships between objects when prompted with object bounding boxes, and demonstrate that such predicate classifiers can match the performance of those trained with full supervision at a fraction of the labeling cost. We also apply our framework to an existing large-scale human activity dataset, and demonstrate the ability of these predicate classifiers trained on human data to enable closed-loop task planning in the real world.

Citations (26)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.