Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Unifying Framework for Characterizing and Computing Width Measures (2109.14610v1)

Published 28 Sep 2021 in cs.DS and cs.CC

Abstract: Algorithms for computing or approximating optimal decompositions for decompositional parameters such as treewidth or clique-width have so far traditionally been tailored to specific width parameters. Moreover, for mim-width, no efficient algorithms for computing good decompositions were known, even under highly restrictive parameterizations. In this work we identify F-branchwidth as a class of generic decompositional parameters that can capture mim-width, treewidth, clique-width as well as other measures. We show that while there is an infinite number of F-branchwidth parameters, only a handful of these are asymptotically distinct. We then develop fixed-parameter and kernelization algorithms (under several structural parameterizations) that can compute every possible F-branchwidth, providing a unifying framework that can efficiently obtain near-optimal tree-decompositions, k-expressions, as well as optimal mim-width decompositions.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.