Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bounds on stabilizer measurement circuits and obstructions to local implementations of quantum LDPC codes (2109.14599v1)

Published 29 Sep 2021 in quant-ph, cs.IT, and math.IT

Abstract: In this work we establish lower bounds on the size of Clifford circuits that measure a family of commuting Pauli operators. Our bounds depend on the interplay between a pair of graphs: the Tanner graph of the set of measured Pauli operators, and the connectivity graph which represents the qubit connections required to implement the circuit. For local-expander quantum codes, which are promising for low-overhead quantum error correction, we prove that any syndrome extraction circuit implemented with local Clifford gates in a 2D square patch of $N$ qubits has depth at least $\Omega(n/\sqrt{N})$ where $n$ is the code length. Then, we propose two families of quantum circuits saturating this bound. First, we construct 2D local syndrome extraction circuits for quantum LDPC codes with bounded depth using only $O(n2)$ ancilla qubits. Second, we design a family of 2D local syndrome extraction circuits for hypergraph product codes using $O(n)$ ancilla qubits with depth $O(\sqrt{n})$. Finally, we use circuit noise simulations to compare the performance of a family of hypergraph product codes using this last family of 2D syndrome extraction circuits with a syndrome extraction circuit implemented with fully connected qubits. While there is a threshold of about $10{-3}$ for a fully connected implementation, we observe no threshold for the 2D local implementation despite simulating error rates of as low as $10{-6}$. This suggests that quantum LDPC codes are impractical with 2D local quantum hardware. We believe that our proof technique is of independent interest and could find other applications. Our bounds on circuit sizes are derived from a lower bound on the amount of correlations between two subsets of qubits of the circuit and an upper bound on the amount of correlations introduced by each circuit gate, which together provide a lower bound on the circuit size.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com