Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sublinear Time and Space Algorithms for Correlation Clustering via Sparse-Dense Decompositions (2109.14528v1)

Published 29 Sep 2021 in cs.DS and cs.LG

Abstract: We present a new approach for solving (minimum disagreement) correlation clustering that results in sublinear algorithms with highly efficient time and space complexity for this problem. In particular, we obtain the following algorithms for $n$-vertex $(+/-)$-labeled graphs $G$: -- A sublinear-time algorithm that with high probability returns a constant approximation clustering of $G$ in $O(n\log2{n})$ time assuming access to the adjacency list of the $(+)$-labeled edges of $G$ (this is almost quadratically faster than even reading the input once). Previously, no sublinear-time algorithm was known for this problem with any multiplicative approximation guarantee. -- A semi-streaming algorithm that with high probability returns a constant approximation clustering of $G$ in $O(n\log{n})$ space and a single pass over the edges of the graph $G$ (this memory is almost quadratically smaller than input size). Previously, no single-pass algorithm with $o(n2)$ space was known for this problem with any approximation guarantee. The main ingredient of our approach is a novel connection to sparse-dense graph decompositions that are used extensively in the graph coloring literature. To our knowledge, this connection is the first application of these decompositions beyond graph coloring, and in particular for the correlation clustering problem, and can be of independent interest.

Citations (26)

Summary

We haven't generated a summary for this paper yet.