Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Contrastive Video-Language Segmentation (2109.14131v1)

Published 29 Sep 2021 in cs.CV and cs.CL

Abstract: We focus on the problem of segmenting a certain object referred by a natural language sentence in video content, at the core of formulating a pinpoint vision-language relation. While existing attempts mainly construct such relation in an implicit way, i.e., grid-level multi-modal feature fusion, it has been proven problematic to distinguish semantically similar objects under this paradigm. In this work, we propose to interwind the visual and linguistic modalities in an explicit way via the contrastive learning objective, which directly aligns the referred object and the language description and separates the unreferred content apart across frames. Moreover, to remedy for the degradation problem, we present two complementary hard instance mining strategies, i.e., Language-relevant Channel Filter and Relative Hard Instance Construction. They encourage the network to exclude visual-distinguishable feature and to focus on easy-confused objects during the contrastive training. Extensive experiments on two benchmarks, i.e., A2D Sentences and J-HMDB Sentences, quantitatively demonstrate the state-of-the-arts performance of our method and qualitatively show the more accurate distinguishment between semantically similar objects over baselines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube