Exploring Teacher-Student Learning Approach for Multi-lingual Speech-to-Intent Classification (2109.13486v1)
Abstract: End-to-end speech-to-intent classification has shown its advantage in harvesting information from both text and speech. In this paper, we study a technique to develop such an end-to-end system that supports multiple languages. To overcome the scarcity of multi-lingual speech corpus, we exploit knowledge from a pre-trained multi-lingual natural language processing model. Multi-lingual bidirectional encoder representations from transformers (mBERT) models are trained on multiple languages and hence expected to perform well in the multi-lingual scenario. In this work, we employ a teacher-student learning approach to sufficiently extract information from an mBERT model to train a multi-lingual speech model. In particular, we use synthesized speech generated from an English-Mandarin text corpus for analysis and training of a multi-lingual intent classification model. We also demonstrate that the teacher-student learning approach obtains an improved performance (91.02%) over the traditional end-to-end (89.40%) intent classification approach in a practical multi-lingual scenario.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.