Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploring More When It Needs in Deep Reinforcement Learning (2109.13477v1)

Published 28 Sep 2021 in cs.LG and cs.AI

Abstract: We propose a exploration mechanism of policy in Deep Reinforcement Learning, which is exploring more when agent needs, called Add Noise to Noise (AN2N). The core idea is: when the Deep Reinforcement Learning agent is in a state of poor performance in history, it needs to explore more. So we use cumulative rewards to evaluate which past states the agents have not performed well, and use cosine distance to measure whether the current state needs to be explored more. This method shows that the exploration mechanism of the agent's policy is conducive to efficient exploration. We combining the proposed exploration mechanism AN2N with Deep Deterministic Policy Gradient (DDPG), Soft Actor-Critic (SAC) algorithms, and apply it to the field of continuous control tasks, such as halfCheetah, Hopper, and Swimmer, achieving considerable improvement in performance and convergence speed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)