Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SiamEvent: Event-based Object Tracking via Edge-aware Similarity Learning with Siamese Networks (2109.13456v1)

Published 28 Sep 2021 in cs.CV, cs.AI, and cs.RO

Abstract: Event cameras are novel sensors that perceive the per-pixel intensity changes and output asynchronous event streams, showing lots of advantages over traditional cameras, such as high dynamic range (HDR) and no motion blur. It has been shown that events alone can be used for object tracking by motion compensation or prediction. However, existing methods assume that the target always moves and is the stand-alone object. Moreover, they fail to track the stopped non-independent moving objects on fixed scenes. In this paper, we propose a novel event-based object tracking framework, called SiamEvent, using Siamese networks via edge-aware similarity learning. Importantly, to find the part having the most similar edge structure of target, we propose to correlate the embedded events at two timestamps to compute the target edge similarity. The Siamese network enables tracking arbitrary target edge by finding the part with the highest similarity score. This extends the possibility of event-based object tracking applied not only for the independent stand-alone moving objects, but also for various settings of the camera and scenes. In addition, target edge initialization and edge detector are also proposed to prevent SiamEvent from the drifting problem. Lastly, we built an open dataset including various synthetic and real scenes to train and evaluate SiamEvent. Extensive experiments demonstrate that SiamEvent achieves up to 15% tracking performance enhancement than the baselines on the real-world scenes and more robust tracking performance in the challenging HDR and motion blur conditions.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com