Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Open Problem on the Bentness of Mesnager's Functions (2109.13421v1)

Published 28 Sep 2021 in cs.IT and math.IT

Abstract: Let $n=2m$. In the present paper, we study the binomial Boolean functions of the form $$f_{a,b}(x) = \mathrm{Tr}1{n}(a x{2m-1 }) +\mathrm{Tr}_1{2}(bx{\frac{2n-1}{3} }), $$ where $m$ is an even positive integer, $a\in \mathbb{F}{2n}*$ and $b\in \mathbb{F}4*$. We show that $ f{a,b}$ is a bent function if the Kloosterman sum $$K_{m}\left(a{2m+1}\right)=1+ \sum_{x\in \mathbb{F}_{2m}*} (-1){\mathrm{Tr}_1{m}(a{2m+1} x+ \frac{1}{x})}$$ equals $4$, thus settling an open problem of Mesnager. The proof employs tools including computing Walsh coefficients of Boolean functions via multiplicative characters, divisibility properties of Gauss sums, and graph theory.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.