Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Clustering with Neighborhoods (2109.13302v1)

Published 27 Sep 2021 in cs.CG

Abstract: In the standard planar $k$-center clustering problem, one is given a set $P$ of $n$ points in the plane, and the goal is to select $k$ center points, so as to minimize the maximum distance over points in $P$ to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the $k$-center problem to allow the covered objects to be a set of general disjoint convex objects $\mathscr{C}$ rather than just a point set $P$. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if $r_{opt}$ is the optimal radius for $k$ centers, then in $n{O(1/\varepsilon2)}$ time we can produce a set of $(1+\varepsilon)k$ centers with radius $\leq r_{opt}$. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping $k$ as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless $\mathsf{P=NP}$, even when $\mathscr{C}$ is a set of line segments. When $\mathscr{C}$ is a set of unit disks we show the problem is hard to approximate within a factor of $\frac{\sqrt{13}-\sqrt{3}}{2-\sqrt{3}}\approx 6.99$. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a $(5+2\sqrt{3})\approx 8.46$ approximation algorithm. Additionally, for unit disks we give an $O(n\log k)+(k/\varepsilon){O(k)}$ time $(1+\varepsilon)$-approximation to the optimal radius, that is, an FPTAS for constant $k$ whose running time depends only linearly on $n$. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in $O(n\log n)$ time.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.